Fortsätt till huvudinnehåll

[VAWT] Second test


There were some issues during the first tests due to that the output voltage from the generator was too low. The generator voltage can be raised by using a gearing factor n that increases the rotational speed and therefore the EMF voltage by 

EMF = n*k*w

where k is the motors voltage constant and w is the wind turbine's rotational speed. The generator will spin faster and therefore generate more voltage, simply put. 




When a gearing is introduced the torque on the generator's rotor is also decreased. This reduces the copper losses 

Ploss,copper = r*I^2 ~ r*(T/(k*n))^2 

as the current I is directly proportional to the torque T, and inversely proportional to a theoretical motor constant k, in theory. Lower rotor torque thus means that the copper losses are reduced. 

Reluctance effects
However, the BLDC motor used is affected by quite a lot of  reluctance effects. An initial torque of a certain level is needed to overcome the reluctance effects and the motor then rotates a step. This wasn't an issue without gearing, but with gearing not not even pressurized air could get the rotor to spin. 

The solution could be a larger rotor that could exert a higher torque, and/or more sophisticated electronic control with lower voltage drops. Reducing the gearing isn't an option with the current electronic circuit as the this gearing ratio is needed to get a proper voltage a the moment. 

First power measurements
An Arduino board was connected to the setup and measured rotational speed, output voltage and output current. The current was measured by using the ACS711EX current measurement IC that does measurements based on the hall effect. 

I think Arduino is great for quick prototypes like this. Earlier I used several other boards, including boards I made myself and did regular low level programming in Eclipse with plugins, and similarily. Sometimes such approaches are needed, but many times it just takes more time than when doing the same thing with   Arduino and alike. 












Kommentarer

Populära inlägg i den här bloggen

The heating system

One of my former projects was the design and practical realization of an automated wood fired heating system. Two key characteristics of the project were the reuse of junkyard bargains and realization of electronic system starting from component level. Budget was kept low. The system is now warming a house situated on a farm on the Swedish countryside.  I for sure have never done a project spanning so many different categories of work. In the end I had done manual metal work and welding, plumbing, electrical installation, creation of control- and calculation algorithms, circuit design and programming to name some. A box on the upper floor of the house with an Atmega328 microprocessor controls the whole heating  system.   Here is a video summary of the project: Systems furnace is a Braland 21 from http://www.braland.se The control system that is now up and running can among other things monitor 16 different temperatures, control all the systems...

[VAWT] Affordable wind measurements

The shop Clas Ohlsson in Sweden sells a spare anemometer for the   WH-1080 weather station  for a hobbyist friendly price around 15 euros. This anemometer can probably be found in other countries too. The WH-1080 spare anemometer Here   you can read about how to use this anemometer together with an Arduino or any other embedded system.  As we couldn't find any data on the characteristics of this sensor, we did our own calibration in a wind tunnel and the results are presented in the report above. This anemometer was used in a Bachelors Thesis project related to the devlopment of optimization of the Savonius Turbine, here tagged [VAWT].

Line follower robot prototype

Before Stockholm Robot Championship 2013 I built a prototype for a line follower robot. The goal was to build something quickly that would be easy to modify, get it to go around the track and then learn as much as possible for a perhaps next version to come. It's the first robot I've built, apart from basic one we built in a project course.  I tried an Olimexino ARM development board for this project. It's basically an Arduino clone but it's physically smaller and lighter than the Arduino Due board, and cheaper, at least on eBay. I had slight problems with the drivers on this board. Here are some info about Olimexino drivers that at least helped me: http://forums.leaflabs.com/topic.php?id=73  However, when considering the "bang for the buck" Olimexino is still an attractive choice when compared to Arduino I think.   I have some stuff laying around in the drawer that I would like to try out on this robot if I choose to continue on it. For instance I w...